Abstract

The migration of ledges in a semicoherent α/β interface is considered to participate in solid-state transformations driven by diffusion. The advance of the ledge and/or the progress of the transformation can require the climb of misfit dislocations both in the ledge and in its path. The creation or annihilation of vacancies required for the transformation and the legde advance is provided by a combination of three vacancy sources or sinks: (a) the net vacancy flux to/from the interface resulting from the difference in lattice plane shift (Kirkendall effect) within the two contacting phases, (b) the climb of misfit dislocations from the interface into the bulk of the α and β phases, and (c) the climb of misorientation dislocations within the interface. Thus, the dynamic action of the interface during the phase transformation would include: (i) climb of misfit dislocations out of the interface, with ensuing dissociation into glissile dislocations which resupply the interface by return glide, and (ii) climb of misorientation dislocations in the interface necessitating a continuing arrival of such dislocations from sources in the bulk or in the interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.