Abstract
Block copolymer (BCP) lithography is a powerful technique to write periodic arrays of nanoscale features into substrates at exceptionally high densities. In order to place these features at will on substrates, nanoimprint offers a deceptively clear path toward high throughput production: nanoimprint molds are reusable, promote graphoepitaxial alignment of BCP microdomains within their topography, and are efficiently aligned with respect to the substrate using interferometry. Unfortunately, when thin films of BCPs are subjected to thermal nanoimprint, there is an overwhelming degree of adhesion at the mold-polymer interface, which compromises the entire process. Here we report the synthesis of additives to mitigate adhesion based on either PS or PDMS with short, interface-active fluoroalkyl chains. When blended with PS-b-PDMS BCPs and subjected to a thermal nanoimprint, fluoroalkyl-modified PS in particular is observed to substantially reduce film adhesion to the mold, resulting in a nearly defect-free nanoimprint. Subsequent lithographic procedures revealed excellent graphoepitaxial alignment of sub-10 nm BCP microdomains, a critical step toward lower-cost, high-throughput nanofabrication.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.