Abstract

Block copolymers with chemically immiscible segments exhibit a variety of microphase-separated nanostructures on the scale of 10-100 nm. Controlling the orientation of these microphase separated nanostructures is vital in many applications such as lithography, membranes, data storage, and so forth. Typical strategies involve the use of external fields or patterned substrates. Here, we report a robust zone casting technique to achieve highly ordered thin films of block copolymers on centimeter-scale substrates. The robustness of this technique is its powerful control on diverse morphologies and exceptional tolerance on versatility of block copolymer chemistry as well as allowance of a wide spectrum of substrates. We demonstrate that perpendicular orientations with respect to the surface are achieved for block copolymers with both lamellar and cylindrical morphologies by controlling solution casting rate, temperatures, and block copolymer chemical structures. Thin films of both noncrystalline and crystalline block copolymers exhibit excellent orientational order and lateral order. However, the lateral order in the thin films of crystalline block copolymers shows dependence on casting temperature and melting temperature of the crystalline segment. Remarkably, all the ordering is independent of the substrates on which the block copolymer films are cast.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.