Abstract
Block copolymer (BCP) lithography is an effective nanopatterning methodology exploiting nanoscale self-assembled periodic patterns in BCP thin films. This approach has a critical limitation for nonplanar substrate geometry arising from the reflow and modification of BCP films upon the thermal or solvent annealing process, which is inevitable to induce the mobility of BCP chains for the self-assembly process. Herein, reflow-free, 3D BCP nanopatterning is demonstrated by introducing a conformally grown adlayer by the initiated chemical vapor deposition (iCVD) process. A highly cross-linked poly(divinylbenzene) layer was deposited directly onto the BCP thin film surface by iCVD, which effectively prevented the reflow of BCP thin film during an annealing process. BCP nanopatterns could be stabilized on various substrate geometry, including a nonplanar deformed polymer substrate, a pyramid shape substrate, and a graphene fiber surface. A fiber-type hydrogen evolution reaction (HER) catalyst is suggested by stabilizing lamellar Pt nanopatterns on severely rough graphene fiber surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.