Abstract
We demonstrate the presence of ferroelectric domains in CH3NH3PbI3 by piezoresponse force microscopy and quantify the coercive field to the switching of the polarization of ferroelectric CH3NH3PbI3. For CH3NH3PbI3 perovskite solar cell, negative electric poling decreases the net built-in electric field, driving potential and width of depletion region inside the absorber layer, which hinders charge separation and deteriorates photovoltaic performance; while positive poling boosts these electrostatic parameters and therefore improves the charge separation inside the absorber. Low coercive field (8kV/cm) enables the switching of CH3NH3PbI3 polarization during the current density–voltage (J–V) measurement. Forward scan initially activates the negative poling, whereas reverse scan first activates the positive poling, which can lead to the J–V hysteretic behavior. Comparative analysis with a traditional ferroelectric 0.25BaTiO3–0.75BiFeO3 solar cell is conducted to confirm the impact of ferroelectric polarization and J–V scanning direction on photovoltaic performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.