Abstract
Analyses of the relationship between natural resources and economic development frequently neglect the interdependency between the depletion of one resource and the depletion of other resources. Of particular interest is how energy resource extraction is affected by the depletion of nonfuel minerals due to the important role of energy in upgrading minerals to a useful state. Although this relationship has been described in theoretical terms, there is little detailed empirical support. To quantify the relationship between the depletion of mineral and fuel resources, we develop a dynamic model that is based on physical, technological, and economic data. Our analysis quantifies the relationship between the depletion of copper in the United States and the depletion of fossil fuel and uranium energy resources stimulated by the increase in demand for refined copper that is forecast for the next 50 years. The model calculates the increase in the energy cost of extracting energy due to the depletion of copper. The results of the model indicate that this feedback is significant. The energy cost of producing a refined ton of copper increases 23% over the 50-year simulation period due to the diminution in ore grade and diminishing returns to technical change. The increase in the energy cost for copper increases the production of fossil and uranium fuels, which diminishes their quality and increases their energy cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.