Abstract

The present study provides an intercomparison of the induced quantities in a human model for uniform magnetic field exposures at extremely low frequency. A total of six research groups have cooperated in this joint intercomparison study. The computational conditions and numeric human phantom including the conductivity of tissue were set identically to focus on the uncertainty in computed fields. Differences in the maximal and 99th percentile value of the in situ electric field were less than 30 and 10 % except for the results of one group. Differences in the current density averaged over 1 cm(2) of the central nerve tissue are 10 % or less except for the results of one group. This comparison suggests that the computational uncertainty of the in situ electric field/current density due to different methods and coding is smaller than that caused by different human phantoms and the conductivitys of tissue, which was reported in a previous study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.