Abstract

The present study quantified the in situ electric field and induced current density in anatomically based numeric Japanese male and female models for exposure to extremely low-frequency magnetic fields. A quasi-static FDTD method was applied to analyse this problem. The computational results obtained herein reveal that the 99 th percentile value of the in situ electric field in the nerve tissue and the current density averaged over an area of 1 cm(2) of the nerve tissue (excluding non-nerve tissues in the averaging region) in the female models were less than 35 and 25 %, respectively. These induced quantities in the Japanese models were smaller than those for European models reported in a previous study, which is mainly due to the difference in cross-sectional area of the body.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.