Abstract
The selective self-assembly of small molecules in the interlayer of kaolinite is a fundamentally important and technologically relevant process, typically studied ex situ by X-ray diffraction (XRD). Near-infrared (NIR) spectroscopy is now introduced to provide a complementary local structural description of intercalation with improved control of experimental conditions.New NIR- and XRD-based proxies were developed and applied to the real-time monitoring of N-methylformamide (NMF) intercalation in two reference kaolinites differing in stacking order.The commonly employed XRD-based formalism was found to overestimate reaction progress. The bonding of NMF in the interlayer was independent of reaction progress and kaolinite type. Both NIR and XRD recorded identical sigmoidal kinetics. Isothermal NIR monitoring (25–80 °C) yielded time-temperature superimposable sigmoidals with an apparent activation energy of ~60 kJ/mol, common to both samples. All NIR and XRD data series could be described as linear combinations of empty and fully intercalated kaolinite. The filling of the interlayer was too fast to be observed. The sigmoidal curves were instead modeled as the log-normally distributed response of an ensemble of intercalating entities, presumably crystallites. The multiplicative standard deviation of the distribution, which determines its steepness, is a sample-specific, temperature-independent property of kaolinite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.