Abstract

Plasmonic and dielectric Mie resonances in subwavelength nanostructures provide an efficient way to manipulate light below the diffraction limit that has fostered the growth of plasmonics and nanophotonics. Plasmonic resonances have been mainly related with the excitation of free charge carriers, initially in metals, and dielectric Mie resonances have been identified in Si nanostructures. Remarkably, although much less studied, semi-metals, semiconductors and topological insulators of the p-block enable plasmonic resonances without free charge carriers and dielectric Mie resonances with enhanced properties compared with Si. In this review, we explain how interband transitions in these materials show a major role in this duality. We evaluate the plasmonic and Mie performance of nanostructures made of relevant p-block elements and compounds, especially Bi, and discuss their promising potential for applications ranging from switchable plasmonics and nanophotonics to energy conversion, especially photocatalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.