Abstract

Fashionable image generation aims to synthesize images of diverse fashion prevalent around the globe, helping fashion designers in real-time visualization by giving them a basic customized structure of how a specific design preference would look in real life and what further improvements can be made for enhanced customer satisfaction. Moreover, users can alone interact and generate fashionable images by just giving a few simple prompts. Recently, diffusion models have gained popularity as generative models owing to their flexibility and generation of realistic images from Gaussian noise. Latent diffusion models are a type of generative model that use diffusion processes to model the generation of complex data, such as images, audio, or text. They are called "latent" because they learn a hidden representation, or latent variable, of the data that captures its underlying structure. We propose a method exploiting the equivalence between diffusion models and energy-based models (EBMs) and suggesting ways to compose multiple probability distributions. We describe a pipeline on how our method can be used specifically for new fashionable outfit generation and virtual try-on using LLM-guided text-to-image generation. Our results indicate that using an LLM to refine the prompts to the latent diffusion model assists in generating globally creative and culturally diversified fashion styles and reducing bias.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.