Abstract

The progress of fingerprint recognition applications encounters substantial hurdles due to privacy and security concerns, leading to limited fingerprint data availability and stringent data quality requirements. This article endeavors to tackle the challenges of data scarcity and data quality in fingerprint recognition by implementing data augmentation techniques. Specifically, this research employed two state-of-the-art generative models in the domain of deep learning, namely Deep Convolutional Generative Adversarial Network (DCGAN) and the Diffusion model, for fingerprint data augmentation. Generative Adversarial Network (GAN), as a popular generative model, effectively captures the features of sample images and learns the diversity of the sample images, thereby generating realistic and diverse images. DCGAN, as a variant model of traditional GAN, inherits the advantages of GAN while alleviating issues such as blurry images and mode collapse, resulting in improved performance. On the other hand, Diffusion, as one of the most popular generative models in recent years, exhibits outstanding image generation capabilities and surpasses traditional GAN in some image generation tasks. The experimental results demonstrate that both DCGAN and Diffusion can generate clear, high-quality fingerprint images, fulfilling the requirements of fingerprint data augmentation. Furthermore, through the comparison between DCGAN and Diffusion, it is concluded that the quality of fingerprint images generated by DCGAN is superior to the results of Diffusion, and DCGAN exhibits higher efficiency in both training and generating images compared to Diffusion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call