Abstract

Understanding the interactions between dissolved organic matter (DOM) and perfluoroalkyl acids (PFAAs) is essential for predicting the distribution, transport, and fate of PFAAs in aquatic environments. Based on field investigations in the northwest of Taihu Lake Basin combined with laboratory experiments, we obtained DOM and PFAA concentrations as well as compositions and investigated key factors of DOM affecting PFAA variability and capture of PFAAs by DOM. Results indicated that the total concentrations of PFAAs were 73.4–689 ng/L in surface water and that PFAAs were dominated by C3–7 perfluoroalkyl carboxylic acids and perfluorooctane sulfonic acid. The main components of DOM included tyrosine-, fulvic-, and tryptophan-like substances. The Mantel test revealed a significant positive correlation between DOM and PFAAs (P = 0.0001). Fulvic-like substances were identified as the most crucial factors affecting PFAA variability. The laboratory experiments revealed that DOM can spontaneously aggregate into a microgel. Furthermore, 19.1–50.9% of PFAAs, DOM characteristic peaks, and several metals (Ca, Mg, Cu, and Fe) can be removed during aggregation, indicating the capacity of DOM binding organic/inorganic substances. The fulvic-like substances were more effectively removed than the protein-like substances. The distribution coefficients of all PFAAs except perfluorohexanoic acid significantly correlated with their perfluorinated carbon numbers (r = 0.975, p<0.001). Our results provided insights into the interactions between DOM and PFAAs, improving the understanding of the distribution, transport, and fate of PFAAs in aquatic environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call