Abstract

We recently proposed the existence of neurotoxic interactions between the cannabinoid type 1 (CB(1)) receptor and transient receptor potential vanilloid 1 (TRPV1) channels in rat mesencephalic cultures. This study seeks evidence for the mediator(s) and mechanisms underlying the neurotoxic interactions between CB(1) receptors and TRPV1 in vitro and in vivo. The mediator(s) and mechanism(s) for the interactions between CB(1) receptors and TRPV1 were evaluated by cell viability assays, immunocytochemistry, Fura-2 calcium imaging, mitochondrial morphology assay, ELISA and Western blot assay in vitro in neuron-enriched mesencephalic cultures. Injections into the substantia nigra and subsequent cell counts were also used to confirm these interactions in vivo. The neurotoxic interactions were mediated by 12(S)-hydroperoxyeicosatetraenoic acid (12(S)-HPETE), an endogenous TRPV1 agonist. CB(1) receptor agonists (HU210 and WIN55,212-2) increased the level of 12(S)-hydroxyeicosatetraenoic acid (12(S)-HETE), a downstream metabolite of 12(S)-HPETE, which stimulates TRPV1-mediated death of mesencephalic neurons, both in vitro and in vivo. The neurotoxicity was mediated by increased intracellular Ca(2+) concentration ([Ca(2+)](i)) through TRPV1, consequently leading to mitochondrial damage and was attenuated by baicalein, a 12-lipoxygenase inhibitor. Activation of CB(1) receptors in rat mesencephalic neurons was associated with biosynthesis of 12(S)-HPETE, which in turn stimulated TRPV1 activity, leading to increased [Ca(2+)](i), mitochondrial damage and neuronal death.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call