Abstract

Metabotropic glutamate receptor 1 (mGlu1) is a promising therapeutic target for neurodegenerative CNS disorders including spinocerebellar ataxias (SCAs). Clinical reports have identified naturally-occurring mGlu1 mutations in rare SCA subtypes and linked symptoms to mGlu1 mutations. However, how mutations alter mGlu1 function remains unknown, as does amenability of receptor function to pharmacological rescue. Here, we explored SCA-associated mutation effects on mGlu1 cell surface expression, canonical signal transduction and allosteric ligand pharmacology. Orthosteric agonists, positive allosteric modulators (PAMs) and negative allosteric modulators (NAMs) were assessed at two functional endpoints (iCa2+ mobilisation and inositol 1-phosphate [IP1] accumulation) in FlpIn Trex HEK293A cell lines expressing five mutant mGlu1 subtypes. Key pharmacological parameters including ligand potency, affinity and cooperativity were derived using operational models of agonism and allostery. mGlu1 mutants exhibited differential impacts on mGlu1 expression, with a C-terminus truncation significantly reducing surface expression. Mutations differentially influenced orthosteric ligand affinity, efficacy and functional cooperativity between allosteric and orthosteric ligands. Loss-of-function mutations L454F and N885del reduced orthosteric affinity and efficacy, respectively. A gain-of-function Y792C mutant mGlu1 displayed enhanced constitutive activity in IP1 assays, which manifested as reduced orthosteric agonist activity. The mGlu1 PAMs restored glutamate potency in iCa2+ mobilisation for loss-of-function mutations and mGlu1 NAMs displayed enhanced inverse agonist activity at Y792C relative to wild-type mGlu1. Collectively, these data highlight distinct mechanisms by which mGlu1 mutations affect receptor function and show allosteric modulators may present a therapeutic strategy to restore aberrant mGlu1 function in rare SCA subtypes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.