Abstract

The geometry, energy and electron density properties of the 1:1, 1:2 and 1:3 complexes between cyclic (Py-M)3 (M = Au, Ag and Cu) and halide ions (F−, Cl− and Br−) were studied using Møller Plesset (MP2) computational methods. Three different configurations were explored. In two of them, the anions interact with the metal atoms in planar and apical dispositions, while in the last configuration, the anions interact with the CH(4) group of the pyrazole. The energetic results for the 1:2 and 1:3 complexes are a combination of the specific strength of the interaction plus a repulsive component due to the charge:charge coulombic term. However, stable minima structures with dissociation barriers for the anions indicate that those complexes are stable and (Py-M)3 can hold up to three anions simultaneously. A search in the CSD confirmed the presence of (Pyrazole-Cu)3 systems with two anions interacting in apical disposition.

Highlights

  • Supramolecular chemistry, molecular recognition and materials science, non-covalent interactions are of utmost importance; examples of their importance are their role in protein shapes [1], protein–protein interactions [2], anion recognition [3,4], drug recognition [5,6] and absorption on surfaces [7]

  • The oldest and most important non-covalent interaction is the hydrogen bond [8,9,10,11,12] but other interactions associated with atoms of columns 17–14 of the periodic table were described in the literature [13] such as halogen [14], chalcogen [15,16], pnictogen [17,18] and tetrel bonds [19,20], respectively

  • They were rationalized based on positive regions of the electrostatic potential surrounding the atoms acting as Lewis acids, with these regions being known as σ-holes [21]

Read more

Summary

Introduction

Supramolecular chemistry, molecular recognition and materials science, non-covalent interactions are of utmost importance; examples of their importance are their role in protein shapes [1], protein–protein interactions [2], anion recognition [3,4], drug recognition [5,6] and absorption on surfaces [7]. Considering the same configuration, 1:1 apical and planar complexes, the most stable complex for a given anion corresponds to the silver derivative, followed by the copper and the gold derivative.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.