Abstract

MotivationDrug-induced liver injury (DILI) is one of the primary problems in drug development. Early prediction of DILI can bring a significant reduction in the cost of clinical trials. In this work we examined whether occurrence of DILI can be predicted using gene expression profile in cancer cell lines and chemical properties of drugs.MethodsWe used gene expression profiles from 13 human cell lines, as well as molecular properties of drugs to build Machine Learning models of DILI. To this end, we have used a robust cross-validated protocol based on feature selection and Random Forest algorithm. In this protocol we first identify the most informative variables and then use them to build predictive models. The models are first built using data from single cell lines, and chemical properties. Then they are integrated using Super Learner method with several underlying methods for integration. The entire modelling process is performed using nested cross-validation.ResultsWe have obtained weakly predictive ML models when using either molecular descriptors, or some individual cell lines (AUC ∈(0.55−0.61)). Models obtained with the Super Learner approach have a significantly improved accuracy (AUC=0.73), which allows to divide substances in two categories: low-risk and high-risk.

Highlights

  • Drug-induced liver toxicity is a common cause of liver injury

  • Hyperparameters selection and feature number fixing In most cases, our feature selection methods reported no relevant variables in gene expression data sets

  • In the case of molecular descriptors obtained from the Mordred, the number of relevant variables obtained for the entire data set is 127 when FDR level 0.1 was applied, see Figures 5 and 6 in the Additional File 1

Read more

Summary

Introduction

Drug-induced liver toxicity is a common cause of liver injury. It accounts for approximately half of the cases of acute liver failure. What is more, it mimics all forms of acute and chronic liver disease. DILI often presents as acute hepatitis and/or cholestasis; virtually any clinicalpathological pattern of acute or chronic liver disease can occur. Each drug associated with hepatotoxicity tends to have a characteristic signature regarding latency and pattern of injury [1]. The mechanism can be arise due to drug metabolism or it can be related to the chemical properties of the drug molecule itself [2].

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.