Abstract
Plants have an amazing ability to adapt to their environment, and this extends beyond biochemical responses and includes developmental changes that help them better exploit resources and survive. The plasticity observed in individual plant morphology is associated with robust developmental pathways that are influenced by environmental factors. However, there is still much to learn about the mechanisms behind the formation of the root system. In Arabidopsis thaliana, the root system displays a hierarchical structure with primary and secondary roots. The process of lateral root (LR) organogenesis involves multiple steps, including LR pre-patterning, LR initiation, LR outgrowth, and LR emergence. The study of root developmental plasticity in Arabidopsis has led to significant progress in understanding the mechanisms governing lateral root formation. The importance of root system architecture lies in its ability to shape the distribution of roots in the soil, which affects the plant's ability to acquire nutrients and water. In Arabidopsis, lateral roots originate from pericycle cells adjacent to the xylem poles known as the xylem-pole-pericycle (XPP). The positioning of LRs along the primary root is underpinned by a repetitive pre-patterning mechanism that establishes primed sites for future lateral root formation. In a subset of primed cells, the memory of a transient priming stimulus leads to the formation of stable pre-branch sites and the establishment of founder cell identity. These founder cells undergo a series of highly organized periclinal and anticlinal cell divisions and expansion to form lateral root primordia. Subsequently, LRP emerges through three overlying cell layers of the primary root, giving rise to fully developed LRs. In addition to LRs Arabidopsis can also develop adventitious lateral roots from the primary root in response to specific stress signals such as wounding or environmental cues. Overall, this review creates an overview of the mechanisms governing root lateral root formation which can be a stepping stone to improved crop yields and a better understanding of plant adaptation to changing environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.