Abstract

Accurately mapping the spatial distribution of soil organic matter (SOM) content is critical for informed land management decisions and comprehensive climate change analyses. Remote sensing-based SOM mapping models during periods of bare soil exposure have demonstrated efficacy in various regional studies. However, integrating bare soil imagery with growing season imagery for SOM content mapping remains a complex process. We conducted a study in Youyi Farm, a representative area of black soil in Northeast China. We collected 574 soil samples (0–20 cm) with SOM content through field sampling and laboratory analysis. Additionally, cloud-free Sentinel-2 images were obtained from the Google Earth Engine (GEE) platform for both the bare soil period (April-June, October) and crop growth period (July-September) from 2019 to 2021. To assess the influence of crop growth information on SOM mapping, we incorporated remote sensing imagery during the crop growth period, considering different crop type zones (maize (Zea mays L.), soybean (Glycine max L.), and rice (Oryza sativa L.)). We conducted overall and zonal regressions using the random forest (RF) model to validate the prediction results through cross-validation. Our findings indicate that: (1) adding crop growth period images to the bare soil period images in different years can improve the accuracy of SOM mapping. For example, in the overall regression model of 2020, the highest accuracy was achieved by using the combination of May-July images, with an R2 value of 0.70 and an RMSE value of 0.71 %; (2) zonal regression by differentiating crop types can effectively improve the SOM mapping accuracy. In 2019, using zonal regression, the R2 of SOM mapping accuracy was improved by 0.02 and the RMSE was reduced by 0.03 % compared with the overall regression; (3) precipitation is an important factor affecting the accuracy of SOM prediction, and the lower the precipitation, the higher the accuracy of SOM prediction. In summary, the results of this study show that in the SOM remote sensing mapping of the black soil area, the growing period remote sensing information of different crop types should be comprehensively considered and combined with the image data of the years of lower precipitation, the accuracy of the SOM mapping can be effectively improved, which provides a new technological path and an application basis for the enhancement of the accuracy in remote sensing mapping with soil attributes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.