Abstract
A current micro-optical system project at Sandia National Laboratories employs an array of resonant subwavelength gratings (RSGs). An RSG functions as an extremely narrow wavelength and angular band reflector, or mode selector. Theoretical studies predict that the infinite, laterally-extended RSG can reflect 100% of the resonant light while transmitting the balance of the other wavelengths. Experimental realization of these remarkable predictions has been impacted primarily by fabrication challenges. Even so, we will present large area (1.0mm) RSG reflectivities as high as 100.2%, normalized to deposited gold. Broad use of the RSG will only truly occur in an accessible micro-optical system. The program at Sandia is a normal incidence array configuration of RSGs where each array element resonates with a distinct wavelength to act as a dense array of wavelength- and mode-selective reflectors. Because of the array configuration, RSGs can be matched to an array of pixels, detectors, or chemical/biological cells for integrated optical sensing. Micro-optical system considerations impact the ideal, large area RSG performance by requiring finite extent devices and robust materials for the appropriate wavelength. Experimental measurements are presented that demonstrate the component response as a function of decreasing RSG aperture dimension and off-normal input angular incidence.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have