Abstract

Recently, scientists proclaimed superconductivity under ambient conditions of room temperature and 1 atmosphere pressure in Cu partial substituted lead apatite: Pb(10-x)Cux(PO4)6. This paper highlights the application of RBL’s stable isotope of positive and negative nuclear magnetic moments (NMMs) theory for explaining the heavy isotopic enrichment of this materials as {207Pb{10-x}63Cux(‘31PιO4)6}, where ι = 17 or 18 and the resulting superconductivity and novel room temperature atmospheric pressure superconductivity of this heavy isotopic enriched substance. On the basis of such analysis by RBL theory, the synthesis of high temperature, regular pressure superconductivity can be explained and this recent experimental observation of ambient pressure and temperature superconductivity in 207Pb{10-x}63Cux(‘31PιO4)6, where ι = 17 or 18, proves RBL’s NMMs theory of high temperature superconductivity. After 1 month on July 22, 2023 of the archiving of such data for superconductivity Pb(10-x)Cux(PO4)6 by Lee and coworkers, a huge experimental effort by hundreds of researchers around the world has attempted to replicate this room temperature, ambient pressure superconductivity in Pb(10-x)Cux(PO4)6 without success. The resulting inability to replicate the ambient superconductivity and note of some fractional component in the mixture causing the ambient superconductivity is explained by RBL’s theory as the fractional component may be clumped isotopes as in {207Pb{10-x}63Cux(‘31PιO4)6}, where ι = 17 or 18, and RBL here notes the vapor deposition process alleged by Lee and coworkers for producing the superconductivity was previously predicted by RBL to cause isotopic fractionation during solid to liquid and liquid to gas and gas to solid physical changes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call