Abstract
Recent experimental developments enable single-cell multimodal epigenomic profiling, which measures multiple histone modifications and chromatin accessibility within the same cell. Such parallel measurements provide exciting new opportunities to investigate how epigenomic modalities vary together across cell types and states. A pivotal step in using this type of data is integrating the epigenomic modalities to learn a unified representation of each cell, but existing approaches are not designed to model the unique nature of this data type. Our key insight is to model single-cell multimodal epigenome data as a multi-channel sequential signal. We developed ConvNet-VAEs, a novel framework that uses 1D-convolutional variational autoencoders (VAEs) for single-cell multimodal epigenomic data integration. We evaluated ConvNet-VAEs on nano-CT and scNTT-seq data generated from juvenile mouse brain and human bone marrow. We found that ConvNet-VAEs can perform dimension reduction and batch correction better than previous architectures while using significantly fewer parameters. Furthermore, the performance gap between convolutional and fully-connected architectures increases with the number of modalities, and deeper convolutional architectures can increase performance while performance degrades for deeper fully-connected architectures. Our results indicate that convolutional autoencoders are a promising method for integrating current and future single-cell multimodal epigenomic datasets. The source code of VAE models and a demo in Jupyter notebook are available at https://github.com/welch-lab/ConvNetVAE. Supplementary results are available at Bioinformatics online.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have