Abstract
This paper presents an integrated theoretical model to evaluate the performance of a flat-sheet membrane-based absorptive dehumidification module with different flow arrangements (i.e., cocurrent, countercurrent, and cross-flow configurations) using an aqueous lithium chloride desiccant. The model results showed good consistency with experimental data, with a maximum relative error of approximately 7%. The performance of the flat-sheet dehumidification module was evaluated for various air and solution channel heights ranging from 1 to 5 mm at a constant Reynolds number in both channels, in terms of sensible, latent, and total effectivenesses. The sensible effectiveness increased with a decrease in the air channel height and an increase in the solution channel height; in particular, the effect of the solution channel height was more pronounced in the cocurrent flow configuration. In addition, the latent effectiveness increased with a decrease in both channel heights. Thus, there was a trade-off between the effects of the solution channel height on the sensible and latent effectivenesses; consequently, the effect of the solution channel height on the total effectiveness was mitigated. The total effectiveness was observed to decrease in the order of countercurrent, cross-, and cocurrent flow configurations; here, its value in the countercurrent flow configuration was approximately 0.788 when both channel heights were 1 mm.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have