Abstract

Fibre and bulk optical isolators are widely used to stabilize laser cavities by preventing unwanted feedback. However, their integrated counterparts have been slow to be adopted. Although several strategies for on-chip optical isolation have been realized, these rely on either integration of magneto-optic materials or high-frequency modulation with acousto-optic or electro-optic modulators. Here we demonstrate an integrated approach for passively isolating a continuous-wave laser using the intrinsically non-reciprocal Kerr nonlinearity in ring resonators. Using silicon nitride as a model platform, we achieve single ring isolation of 17–23 dB with 1.8–5.5-dB insertion loss, and a cascaded ring isolation of 35 dB with 5-dB insertion loss. Employing these devices, we demonstrate hybrid integration and isolation with a semiconductor laser chip. The intrinsic Kerr nonlinearity in ring resonators is exploited to demonstrate passive isolation of a continuous-wave laser. Up to 35-dB isolation with 5-dB insertion loss was achieved on-chip.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call