Abstract
Integrable higher-order generalizations of the nonlinear Schrödinger equation that describes the propagation of multi-mode optical pulses in a fiber are presented. We construct the coupled higher-order nonlinear Schrödinger equation (CHONSE) in association with each Hermitian symmetric spaces and demonstrate its integrability by deriving the Lax pair. We show that two distinct types of higher-order generalizations are possible, which we call as the `type-I' and the `type-II' CHONSE. The type-I and the type-II CHONSE generalize the Hirota and the Sasa–Satsuma equations respectively and it is shown that the type-II CHONSE can be obtained via a consistent reduction of the type-I CHONSE based on the AIII symmetric spaces.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.