Abstract

Quantum battery concerns about population redistribution and energy dispatch over controllable quantum systems. Under unitary transformation, ergotropy rather than energy plays an essential role in describing the accumulated useful work. Thus, the charging and recharging of quantum batteries are distinct from the electric-energy input and reuse of classical batteries. In this work, we focus on recharging a three-level quantum battery that has been exhausted under self-discharging and work extraction. We find that the quantum battery cannot be fully refreshed with the maximum ergotropy only by the driving pulses for unitary charging. For an efficient refreshment of the quantum battery, we propose a fast and stable recharging protocol based on postselection and shortcut to adiabaticity. More than accelerating the adiabatic passage for charging, the protocol can eliminate unextractable energy and is robust against driving errors and environmental decoherence. Our protocol is energy-saving and experimental-feasible, even in systems with forbidden transition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.