Abstract
The angular dependence of the X-ray photoelectron spectroscopy (XPS) signal is influenced not only by the electron take-off angle, but also by instrument-related geometrical factors. The XPS signal is, in fact, integrated over the overlap between the X-ray beam, the spectrometer analysis volume, and the sample surface. This overlap depends on the size and shape of the spectrometer analysis volume and X-ray beam, as well as on their relative orientation. In this paper it is described the models and protocols for the characterization of the parameters defining the geometry of an XPS instrument. The protocols include practical methods for assessing the spectrometer analysis area and the X-ray beam spot dimension. Simple systems consisting of flat and “thick” gold films on silicon wafers were employed. The parameters found with those samples are transferable to other more complex systems since they are geometrical in nature. The method allows for the prediction of the actual intensity of XPS peaks, hence removing the need of normalizing the peak areas to the area of a determined substrate peak. The associated reduction of the uncertainty in half is of special importance since the quantitative analysis of angle-resolved XPS data could be very sensitive to noise. Two rotating and one non-rotating XPS instruments are described. Some examples of the applications of the method are also provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Electron Spectroscopy and Related Phenomena
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.