Abstract

X-ray photoelectron spectroscopy (XPS) is a powerful tool for probing the local chemical environment of atoms near surfaces. When applied to soft matter, such as polymers, XPS spectra are frequently shifted and broadened due to thermal atom motion and by interchain interactions. We present a combined quantum mechanical QM/molecular dynamics (MD) simulation of X-ray photoelectron spectra of polyvinyl alcohol (PVA) using oligomer models in order to account for and quantify these effects on the XPS (C1s) signal. In our study, molecular dynamics at finite temperature were performed with a classical forcefield and by ab initio MD (AIMD) using the Car–Parrinello method. Snapshots along the trajectories represent possible conformers and/or neighbouring environments, with different C1s ionization potentials for individual C atoms leading to broadened XPS peaks. The latter are determined by Δ-Kohn Sham calculations. We also examine the experimental practice of gauging XPS (C1s) signals of alkylic C-atoms in C-containing polymers to the C1s signal of polyethylene.We find that (i) the experimental XPS (C1s) spectra of PVA (position and width) can be roughly represented by single-strand models, (ii) interchain interactions lead to red-shifts of the XPS peaks by about 0.6eV, and (iii) AIMD simulations match the findings from classical MD semi-quantitatively. Further, (iv) the gauging procedure of XPS (C1s) signals to the values of PE, introduces errors of about 0.5eV.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call