Abstract

Akaike's framework for thinking about model selection in terms of the goal of predictive accuracy and his criterion for model selection have important philosophical implications. Scientists often test models whose truth values they already know, and they often decline to reject models that they know full well are false. Instrumentalism helps explain this pervasive feature of scientific practice, and Akaike's framework helps provide instrumentalism with the epistemology it needs. Akaike's criterion for model selection also throws light on the role of parsimony considerations in hypothesis evaluation. I explain the basic ideas behind Akaike's framework and criterion; several biological examples, including the use of maximum likelihood methods in phylogenetic inference, are considered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.