Abstract

During the last fifteen years, Akaike's entropy-based Information Criterion (AIC) has had a fundamental impact in statistical model evaluation problems. This paper studies the general theory of the AIC procedure and provides its analytical extensions in two ways without violating Akaike's main principles. These extensions make AIC asymptotically consistent and penalize overparameterization more stringently to pick only the simplest of the “true” models. These selection criteria are called CAIC and CAICF. Asymptotic properties of AIC and its extensions are investigated, and empirical performances of these criteria are studied in choosing the correct degree of a polynomial model in two different Monte Carlo experiments under different conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.