Abstract

The goal of accelerating expertise can leave researchers and trainers in human factors, naturalistic decision making, sport science, and expertise studies concerned about seemingly insufficient application of expert performance theories, findings and methods for training macrocognitive aspects of human performance. Video-occlusion methods perfected by sports expertise researchers have great instructional utility, in some cases offering an effective and inexpensive alternative to high-fidelity simulation. A key problem for instructional designers seems to be that expertise research done in laboratory and field settings doesn't get adequately translated into workplace training. Therefore, this article presents a framework for better linkage of expertise research/training across laboratory, field, and workplace settings. It also uses a case study to trace the development and implementation of a macrocognitive training program in the very challenging workplace of the baseball batters' box. This training, which was embedded for a full season in a college baseball team, targeted the perceptual-cognitive skill of pitch recognition that allows expert batters to circumvent limitations of human reaction time in order to hit a 90 mile-per-hour slider. While baseball batting has few analogous skills outside of sports, the instructional design principles of the training program developed to improve batting have wider applicability and implications. Its core operational principle, supported by information processing models but challenged by ecological models, decouples the perception-action link for targeted part-task training of the perception component, in much the same way that motor components routinely are isolated to leverage instructional efficiencies. After targeted perceptual training, perception and action were recoupled via transfer-appropriate tasks inspired by in situ research tasks. Using NCAA published statistics as performance measures, the cooperating team improved from middling performance to first in their conference in Runs Scored and team Batting Average. This case suggests that, beyond the usual considerations of effectiveness and efficiency, there are four challenges to embedded training in the workplace setting —namely: duration, curriculum, limited resources, and buy in. In the case reported here, and potentially in many domains beyond sports, part-task perceptual-cognitive training can improve targeted macrocognitive skills and thereby improve full-skill performance.

Highlights

  • Sport has long been considered a productive test bed for research on expert performance and training that can potentially accelerate the expertise of performers in military domains (Ward et al, 2008), and other contexts that require macrocognition

  • Change in the statistics of Runs-per-Game and Walk-toStrikeout Ratio (BB/K) are bolded in Tables 1, 2 because these are the most relevant statistical representations of team offense and individual plate discipline, which is defined as swinging at pitches that are in the strike zone and refraining from swinging at pitches that are out of the strike zone

  • In the 2014 season, which included pitch recognition training, the cooperating team was higher than conference means on all of the analyzed batting statistics

Read more

Summary

Introduction

Sport has long been considered a productive test bed for research on expert performance and training that can potentially accelerate the expertise of performers in military domains (Ward et al, 2008), and other contexts that require macrocognition (defined as cognitive adjustments to performance complexity, cf. Klein, 2010). Macrocognitive skills such as anticipation and rapid decision making (Eccles et al, 2008) can potentially be accelerated using expertise-based training (XBT) that draws upon the theories, findings, and methods of expertise research in order to design training programs that can efficiently and effectively train expertise in workplace settings (Fadde, 2009a, 2013). What training-based research projects can offer to the expertise research community are, first, satisfaction with successful implementation of research and, second, insights from fit-in-field modifications that can suggest new basic research questions

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.