Abstract

The mechanism of damage evolution and fracture in A357 casting alloys was investigated by in-situ scanning electron microscopy (SEM) tensile testing. Different microstructures of A357 casting alloys were produced by eutectic Si modification and T6 heat treatment. It is shown that microcracks in these alloys are predominantly formed in eutectic Si particles. Large and elongated eutectic Si particles in unmodified alloy show the greater tendency to cracking, whereas cracking of small and round eutectic Si particles in Sr modified and T6 heat treated alloys is relatively lag. The crack mainly propagates along the broken eutectic Si particles in unmodified and Sr modified alloys or along the deepened shear bands in T6 heat treated alloy with accumulating the applied strain. The results were discussed in terms of Weibull statistics and the fracture models were established.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.