Abstract

Biodrying was first used for post-treatment of storage sludge mixed with beer lees. In this study, dynamic changes in dissolved organic matter (DOM), bacterial community structure, bacterial associations as well as metabolic functions were investigated using Excitation-Emission Matrix (EEM) spectra, high-throughput sequencing, network and correlation matrix analyses, and Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt). Furthermore, a hypothetical model was proposed to better understand the biodrying process. The results showed that desired performance was obtained and DOM variations revealed that biodrying can increase biostability of the matrix. The bacterial communities differed among different stages of the biodrying. At the phylum level, the dominant phyla were Proteobacteria and Bacteroidetes in the mesophilic and cooling phases, whereas Firmicutes became the most dominant phylum in the thermophilic phase. At the genus level, the dominant bacteria in the mesophilic and cooling phases were not obvious, while Ureibacillus and Bacillus were the dominant genera in the thermophilic phase. Network and correlation matrix analyses were useful tools for insights into the bacterial interactions. PICRUSt metagenome inference indicated that metabolism, genetic information processing, and environmental information processing were the primary metabolic pathways. These results allowed us to advance a hypothetical model explaining how succession in bacterial associations regulates the dynamics of a biodrying system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call