Abstract

In this study, the dynamic changes in fungal biodiversity, community structure, fungal associations and functional characteristics were investigated in the biodrying of storage sludge and beer lees by using high throughput sequencing, network and correlation matrix analyses, and FUNGuild database. Additionally, a hypothetical model was provided to better understand the biodrying system. The results showed that fungal diversity decreased after biodrying, while community richness increased in the mesophilic stage and decreased as biodrying progressed. Fungal communities differed in different stages of the biodrying process. Ascomycota and Basidiomycota were the dominant phyla throughout the biodrying process, while Pichia was the dominant genus in the thermophilic stage. Network and correlation matrix analyses provided useful tools for insight into the fungal interactions, allowing us to propose a conceptual model of how succession in fungal associations regulates the dynamics of biodrying systems. Biodrying treatment had a significant effect on fungal trophic modes, with most pathogenic fungi fading away over the process, illustrating that biodrying is an effective bio-treatment method to eliminate pathogenic fungi. These findings provide information that elucidates the fungal interactions and functional characteristics during the biodrying process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call