Abstract

A free-standing SiO2/C composite nanofiber mat (FS-SiO2/C-CNFM), prepared by electrospinning with heat treatments, is used as a multifunctional interlayer on the cathode side to suppress the polysulfide shuttle effect in lithium–sulfur batteries. The polysulfide adsorption and conversion capabilities of the interlayer are evaluated by a static polysulfide adsorption test and an electrochemical conversion test in an FS-SiO2/C-CNFM symmetric cell. The effects of the FS-SiO2/C-CNFM on the electrochemical properties of the lithium–sulfur batteries are studied by cyclic voltammetry, galvanostatic charge–discharge cycle tests, and electrochemical impedance spectroscopy. The FS-SiO2/C-CNFM interlayer significantly improves the specific capacity, long-cycling stability, and self-discharge behavior of the lithium–sulfur batteries. The cell with the FS-SiO2/C-CNFM interlayer has an initial discharge capacity of 1304 mA h g−1 and retains 934 mA h g−1 over 50 cycles at 0.1 C, corresponding to a capacity retention of 72% with 100% Coulombic efficiency. The improved properties are attributed to the suppression of the shuttle effect and the high reutilization of the trapped polysulfides. The adsorption/conversion mechanisms of the polysulfides of the FS-SiO2/C-CNFM interlayer are further elucidated from the results of ex situ X-ray photoelectron spectroscopy (XPS) and field-emission scanning electron microscopy (FE-SEM) with energy-dispersive X-ray spectroscopy (EDS) analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.