Abstract

Over the past six years at EBR-II, a great deal of information has been obtained on the in-reactor behaviour of solution annealed-Type 304L stainless steel. This information consists of the following: (1) Irradiation induced swelling results in the form of immersion density and transmission electron microscope (TEM) measurements on unstressed material that extends over a temperature range of 395° to 530°C and a neutron fluence range of 1.8 to 9.3 × 1022 n/cm2 (E > 0.1 MeV). (2) Irradiation induced creep results from helium pressurized capsules irradiated at a temperature of 415°C. The hoop stress range covered in the experiment was 0 to 27.3 ksi, and the peak neutron fluence obtained to date is 7 × 1022 n/cm2 (E > 0.1 MeV). (3) Residual stress measurements (slit tube technique) with complementary TEM gradient studies on stressed and unstressed capsules. (4) Comparative swelling studies of stressed cladding material and unstressed capsule material from encapsulated EBR-II driver fuel experiments over wide ranges of temperature and neutron fluences. The deformation information derived from the four above studies represent an extensive data base from which to obtain an understanding of the in-reactor deformation of austenitic stainless steel. It is the purpose of this paper to review our information on the in-reactor deformation of solution annealed Type 304 L stainless steel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call