Abstract

Formation of shear bands and strain-induced ε- and α′-martensite phases during tensile deformation of austenitic stainless steels was studied. Stacking fault energies (SFE) of the studied steels were measured by X-ray diffraction. Effects of external stress and SFE on the width of the stacking faults were analysed. An excellent correlation between the calculations and actual microstructures examined by scanning electron microscopy was found. Effect of overlapping of stacking faults on the fault width was discussed. Based on the discussions and experimental results, compositional, temperature and strain rate dependencies of the strain-induced α′-martensite transformation are believed to be governed mainly by the variation in the SFE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call