Abstract
Sensory experiences and learning induce long-lasting changes in both excitatory and inhibitory synapses, thereby providing a crucial substrate for memory. However, the co-tuning of excitatory long-term potentiation (eLTP) or depression (eLTD) with the simultaneous changes at inhibitory synapses (iLTP/iLTD) remains unclear. Herein, we investigated the co-expression of NMDA-induced synaptic plasticity at excitatory and inhibitory synapses in hippocampal CA1 pyramidal cells (PCs) using a combination of electrophysiological, optogenetic, and pharmacological approaches. We found that inhibitory inputs from somatostatin (SST) and parvalbumin (PV)-positive interneurons onto CA1 PCs display input-specific long-term plastic changes following transient NMDA receptor activation. Notably, synapses from SST-positive interneurons consistently exhibited iLTP, irrespective of the direction of excitatory plasticity, whereas synapses from PV-positive interneurons predominantly showed iLTP concurrent with eLTP, rather than eLTD. As neuroplasticity is known to depend on the extracellular matrix, we tested the impact of metalloproteinases (MMP) inhibition. MMP3 blockade interfered with GABAergic plasticity for all inhibitory inputs, whereas MMP9 inhibition selectively blocked eLTP and iLTP in SST-CA1PC synapses co-occurring with eLTP but not eLTD. These findings demonstrate the dissociation of excitatory and inhibitory plasticity co-expression. We propose that these mechanisms of plasticity co-expression may be involved in maintaining excitation-inhibition balance and modulating neuronal integration modes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.