Abstract

With the world's population continuing to grow, ensuring sustainable protein sources for everyone is becoming increasingly challenging. Despite meat being considered unsustainable, people find it challenging to abstain from consuming it. However, one solution to this dilemma could be the incorporation of mealworms into conventional meat products, i.e., sausages. The incorporation of mealworms into sausage formulations appears to shift the fatty acid profile towards higher levels of monounsaturated fats and polyunsaturated fatty acids (PUFAs), particularly omega-3s, potentially enhancing the nutritional value and offering health benefits. Therefore, our study aimed to improve the nutritional value and safety parameters of traditional sausages by enriching them with the flour of mealworm larvae. For this purpose, the larvae were reared on a sustainable substrate with brewery by-products, brewer's yeast, and carrots. They were used frozen and freeze-dried in sausage recipes, replacing pork in different proportions. The analysis of the product's chemical safety parameters (biogenic amines, nitrates and nitrites, volatile fatty acids (FA), and peroxide) and nutritional value (including collagen, cholesterol, amino acids, FA, and hydroxyproline) was carried out in an accredited laboratory. The results of our study have demonstrated that the incorporation of mealworms into sausages, particularly through freeze-drying, increased fat content and enhanced the profile of FA, including omega-3s while reducing protein and cholesterol levels, and altering collagen content, suggesting improved nutritional value and potential health benefits without compromising the safety of the product. Therefore, we are highlighting that the addition of mealworms influences the quality of amino acids positively and maintains biogenic amine levels within safe limits, alongside a negligible impact on nitrates and nitrites and a reduction in peroxide values. These findings indicate an overall improvement in sausage quality and safety without compromising safety.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.