Abstract

InN/In0.75Ga0.25N complementary heterojunction-enhanced tunneling field-effect transistors (HE-TFETs) were characterized using the numerical simulation. InN/In0.75Ga0.25N HE-TFET has an InN/In0.75Ga0.25N heterojunction located in the channel region with a distance of LT-H from the source/channel tunneling junction. We demonstrate that, for both n- and p-channel devices, HE-TFETs have a delay of onset voltage VONSET, a steeper subthreshold swing (SS), and an enhanced on-state current ION in comparison with the homo-TFETs. InN/In0.75Ga0.25N n- and p-channel HE-TFETs with a gate length LG of 25 nm and a LT-H of 5 nm achieve a 7 and 9 times ION improvement in comparison with the homo devices, respectively, at a supply voltage of 0.3 V. The performance enhancement in HE-TFETs is attributed to the modulating effect of heterojunction on band-to-band tunneling (BTBT). Because InN/In0.75Ga0.25N heterointerface shows the similar band offsets at conduction and valence bands, the InN/In0.75Ga0.25N heterojunction exhibits the improved effect on BTBT for both n- and p-channel devices. This makes InN/In0.75Ga0.25N heterojunction a promising structure for high performance complementary TFETs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call