Abstract

Combustion instabilities in a high-pressure, multi-element combustor are studied in order to understand the relationship between the chamber and injector dynamics. A linear array of seven injectors supplies premixed natural gas and air into a rectangular combustion chamber designed to promote high-frequency, transverse thermoacoustic instabilities. The effect of equivalence ratio on the combustion dynamics was investigated for two injector lengths, 62.5 and 125 mm. For all operating conditions, the 125 mm injectors promote high-amplitude instabilities of the fundamental transverse (1T) mode, which has a frequency of 1750–1850 Hz. Reducing the injector length significantly lowers the instability amplitudes for all operating conditions and, for lower equivalence ratio cases, excites an additional mode near 1550 Hz. The delineating feature controlling the growth of the instabilities in each injector configuration is the coupling with axial pressure fluctuations in the injectors that occur in response to the transverse modes in the chamber.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call