Abstract
This work presents a data-driven optimization technique for the optimization of the flame response within a low-order acoustic network model. The methodology exploits the Nyquist criterion to compute a measure of thermoacoustic robustness at targeted frequencies, which serves as an objective value for the optimized system. The method is demonstrated using a simple Rijke tube model coupled with a [Formula: see text]-equation solver to model flame dynamics. The approach is shown to efficiently increase the stability margin of the system by modifying the flame transfer function. The methodology is applied to two examples, based on which possible scenarios are discussed and the potential and limitations associated with the practical implementation of the method are analyzed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Spray and Combustion Dynamics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.