Abstract

In this paper, we report on an increase in emission intensity of up to 10 nW/µm2 that has been realized with a new novel two junction, diagonal avalanche control, and minority carrier injection silicon complementary metal–oxide–semiconductor (CMOS) light emitting device (LED). The device utilizes a four-terminal configuration with two embedded shallow n+p junctions in a p substrate. One junction is kept in deep-avalanche and light-emitting mode, while the other junction is forward biased and minority carrier electrons are injected into the avalanching junction. The device has been realized using standard 0.35 µm CMOS design rules and fabrication technology and operates at 9 V in the current range 0.1–3 mA. The optical output power is about one order of magnitude higher for previous single-junction n+p light-emitting devices while the emission intensity is about two orders of magnitude higher than for single-junction devices. The optical output is about three orders of magnitude higher than the low-frequency detectivity limit of silicon p–i–n detectors of comparable dimensions. The realized characteristics may enable diverse optoelectronic applications in standard-CMOS-silicon-technology-based integrated circuitry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.