Abstract

The initial surface roughening during Ge epitaxy on Si(001) is shown to arise from an effective repulsion between S(A) surface steps and dimer vacancy lines (VLs). This step-VL interaction gradually inactivates a substantial fraction of adatom attachment sites at the growth front, causing a rapid increase in the rate of two-dimensional island nucleation. The mutual repulsion hinders the crossing of S(A) surface steps over VLs in the second layer, thus organizing the developing surface roughness into a periodic array of anisotropic 2D terraces. Isolated (105) facets forming at specific sites on this ordered template mediate the assembly of first 3D Ge islands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.