Abstract
ABSTRACTHeteroepitaxial growth of 3C-SiC on Si in gas source molecular beam epitaxy ( GSMBE ) was carried out by a combination of carbonization of a Si surface and subsequent crystal growth on it using hydrocarbon radicals and Si2H6. The carbonization process and the initial stage of the subsequent growth during the intermittent supply of Si2H6 have been studied by a reflection high-energy electron diffraction (RHEED) observation. A Si surface was chemically converted to 3C-SiC at 750°C, and homoepitaxial growth on the carbonized layer could be obtained at 1000°C. Si atoms generated by thermal decomposition on a surface would react with hydrocarbon radicals, forming SiC through a layer by layer growth mode.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have