Abstract

A remote plasma atomic layer deposition (RPALD) method has been applied to grow a hafnium oxide thin film on the Si substrate. The deposition process was monitored by in situ XPS and the as-deposited structure and chemical bonding were examined by TEM and XPS. The in situ XPS measurement showed the presence of a hafnium silicate phase at the initial stage of the RPALD process up to the 20th cycle and indicated that no hafnium silicide was formed. The initial hafnium silicate was amorphous and grew to a thickness of approximately 2nm. Based on these results and model reactions for silicate formation, we proposed an initial growth mechanism that includes adatom migration at nascent step edges. Density functional theory calculations on model compounds indicate that the hafnium silicate is thermodynamically favored over the hafnium silicide by as much as 250kJ∕mol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.