Abstract

To demonstrate the feasibility andpotential of using a second-generation prototype photon-counting computed tomography (CT) system to provide simultaneous high spatial resolution images and high spectral resolution material information across a range of routine imaging tasks using clinical patient exposure levels. The photon-counting system employs an innovative silicon-based photon-counting detector to provide a balanced approach to ultra-high-resolution spectral CT imaging. An initial cohort of volunteer subjects was imaged using the prototype photon-counting system. Acquisition technique parameters and radiation dose exposures were guided by routine clinical exposure levels used at the institution. Images were reconstructed in native slice thickness using an early version of a spectral CT reconstruction algorithm Samples of images across a range of clinical tasks were selected and presented for review. Clinical cases are presented across inner ear, carotid angiography, chest, and musculoskeletal imaging tasks. Initial reconstructed images illustrate ultra-high spatial resolution imaging. The fine detail of small structures and pathologies is clearly visualized, and structural boundaries are well delineated. The prototype system additionally provides concomitant spectral information with high spatial resolution. This initial study demonstrates that routine imaging at clinically appropriate patient exposure levels is feasible using a novel deep-silicon photon-counting detector CT system. Furthermore, a deep-silicon detector may provide a balanced approach to photon-counting CT, providing high spatial resolution imaging with simultaneous high-fidelity spectral information.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.