Abstract
Abstract X-ray computed tomography (CT) has been widely used in the diagnostic imaging of the interior of the human body. However, the radiation dose of conventional CT typically amounts to 10 mSv. Under such environments, X-ray photons are severely piled-up; therefore, conventional CT acquires energy integrated images, and artifacts are formed by beam hardening. In contrast, a photon counting CT (PC-CT) system is anticipated to construct a low-dose and multi-color CT system. Recently, we proposed a novel PC-CT system using a multipixel photon counter (MPPC) coupled with a high-speed scintillator , which is cost effective and easy to assemble compared to other methods using CdZnTe device. In this paper, we report the results using an advanced CT system consisting of a 16-channel MPPC and scintillator array coupled with a newly developed large-scale integrated circuit (LSI) having an ultrafast signal processing capability. We present the performance of the photon-counting CT capability, such as the contrast of the obtained CT images compared with that of the current-mode CT, and we found that substantial reduction in radiation dose by an order of magnitude. In addition, we report the results of three-dimensional multicolor imaging to identify phantom materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.