Abstract
To improve the quality of a strained Si layer on a SiGe virtual substrate, the distribution of dislocations in a graded SiGe layer is characterized using electron beam induced current (EBIC). A crosshatch pattern of dark and bright bands running along the two ⟨110⟩ directions is observed in an EBIC image taken with a 25-keV-electron beam at 80 K. These dark and bright EBIC bands are attributed, respectively, to high- and low-density dislocation regions in the graded SiGe layer, as is confirmed by transmission electron microscopy. The effects of such an inhomogeneous dislocation distribution on the surface morphology and the generation of misfit dislocations (MDs) at the interface of strained Si∕SiGe are investigated. Comparison between the EBIC image and an atomic force microscope image shows that the high-density dislocation regions are correlated with ridges on the surface topography. A chemical etching image shows that most of the MDs lie along the edges of surface ridges. Possible mechanisms of MD generation at the interface of the strained Si∕SiGe are proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.