Abstract

In this study, a new series of trihalomethyl-substituted pyrimidines and dihydropyrimidines were synthesized and tested as potential NTPDase inhibitors. For this purpose, synaptosomes from rat cerebral cortex were used as the enzyme source and ATP and ADP were used as the substrate. Among the new compounds, 4-methyl-2-methylsulfanyl-6-trichloromethylpyrimidine (2b) was found to be the most effective noncompetitive inhibitor, with an estimated K(i) value of 0.18 and 0.55 mM for ATP and ADP, respectively. Other pyrimidines inhibited NTPDase activity with the following rank order of inhibitory potency: 3,6-dimethyl-2-methylsulfanyl-4-trifluoromethyl-3,4-dihydro-pyrimidin-4-ol (3a) > 5-methyl-2-(4-methyl-6-trifluoromethyl-pyrimidin-2-yl)-3-trifluoromethyl-3,4-dihydro-2H-3-pyrazol-3-ol (6a) > 5-bromo-4,6-dimethoxy-4-trichloromethyl-1,2,3,4-tetrahydro-2-pyrimidin-2-one (9) for ATP and 6a > 9 > 3a for ADP. Our results demonstrate that a novel group of pyrimidines compounds can act as inhibitors of ATP and ADP hydrolysis in synaptosomes from rat cerebral cortex. These results can contribute for the understanding of the NTPDase activity and for further studies involving new compounds that can enlist as it inhibitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.